الفرق بين ANCOVA والانحدار



ANCOVA مقابل الانحدار

كلا ANCOVA والانحدار والتقنيات والأدوات الإحصائية. ANCOVA وحصة الانحدار العديد من أوجه التشابه ولكن أيضا لها خصائص تختلف عن بعضها البعض. وتقوم كل من ANCOVA والانحدار على متغيرا وهو متغير توقع المستمر.

ANCOVA لتقف على تحليل التغاير. بل هو مزيج من ANOVA (تحليل التباين) في اتجاه واحد والانحدار الخطي، وهو البديل من الانحدار. انها تتعامل مع كل المتغيرات الفئوية والمستمرة. وهي طريقة إحصائية محددة لتحديد مدى التباين في متغير واحد أن يرجع إلى التباين في بعض المتغيرات الأخرى.

ANCOVA هو في الأساس أنوفا مع مزيد من التطور وإضافة متغير المستمر لنموذج أنوفا القائمة. شكل آخر من أشكال ANCOVA هو MANCOVA (تحليل متعدد المتغيرات التغاير). أيضا، ANCOVA هو النموذج الخطي العام الذي يحتوي على متغير النتيجة المستمر واثنين أو أكثر من المتغيرات توقع. المتغيرات مؤشرا هما على حد سواء المتغيرات المستمرة والفئوية.

في متغير المستمر، والبيانات الكمية وتحجيمها في حين يتميز البيانات القاطع كما اسمية وغير تحجيمها. يستخدم ANCOVA أساسا للسيطرة على العوامل التي لا يمكن العشوائية ولكن لا يزال يمكن أن تحسب على نطاق الفاصل في تصاميم تجريبية أثناء التصاميم المراقبة، يتم استخدامه لمحو آثار المتغيرات التي تتغير العلاقة بين المستقلين القاطع والمعالين الفاصلة. لديها MANCOVA أيضا بعض استخدامها في نماذج الانحدار حيث وظيفتها الرئيسية هي لتتناسب مع الانحدارات في كل من المستقلين القاطع والفاصل.
ANCOVA هو نموذج يعتمد على الانحدار الخطي حيث يجب أن تكون خطية المتغير التابع لمتغير مستقل. أصول MANCOVA وكذلك أنوفا تنبع من الزراعة حيث نشعر بالقلق المتغيرات الرئيسية ذات المحاصيل.
من ناحية أخرى، تراجع هو أيضا أداة إحصائية والذي يتوفر في العديد من المتغيرات. وتشمل مشتقاته نموذج الانحدار الخطي، بسيطة الانحدار الخطي، الانحدار اللوجستي، الانحدار غير الخطية، الانحدار اللامعلمية، الانحدار القوي، والانحدار التدريجي. صفقات الانحدار مع المتغيرات المستمرة.
الانحدار هي علاقة متغير متغير مستقل ويعتمد بعضها البعض. في هذا النموذج، هناك متغير تابع واحد واحد أو أكثر من المتغيرات المستقلة. وهناك أيضا محاولة لفهم التغير في قيم المتغير التابع نتيجة للتغيرات في واحد من المتغيرات المستقلة. في هذه الحالة، لا تزال المتغيرات المستقلة الأخرى ثابتة.

في الانحدار، وهناك نوعان أساسيان: الانحدار الخطي والانحدار المتعدد. في الانحدار الخطي، يتم استخدام متغير مستقل واحد لشرح و /أو التنبؤ بنتيجة 'Y' (والتي تحاول المتغير إلى التنبؤ). من ناحية أخرى، هناك أيضا مضاعفات الذي يستخدم الانحدار ولكن لا احد اثنين أو أكثر من المتغيرات المستقلة على التنبؤ بالنتيجة.



المعادلة لكل من الانحدار الخطي والخطية هي: ص = أ + ب س + ش بينما شكل الانحدار المتعدد هو: ص = أ + b1X1 + b2X2 + B3X3 + + + BtXt ش.

في كل المعادلات، و 'Y' لتقف على المتغير الذي يحاول التنبؤ. و'X' هو أداة المتغيرة للتنبؤ 'Y' متغير. 'أ' هو اعتراض، 'ب' هو المنحدر، و 'ش' بمثابة الانحدار المتبقية. وتجدر الإشارة إلى أن اعتراض، المنحدر، والمتبقي الانحدار ثابتة.

الانحدار هو طريقة للتنبؤ والتنبؤ بها نتيجة مستمرة. وهو الأسلوب الذي تريد استخدامه لنتائج مستمرة، وعلى أساس واحد أو أكثر من المتغيرات توقع مستمرة. بدأ الانحدار من مجال الجغرافيا الذي يهدف إلى محاولة العثور على الحجم الحقيقي للأرض.

ملخص:

1. ANCOVA هو، النموذج الخطي محددة في مجال الإحصاء. الانحدار هو أيضا أداة إحصائية، بل هو مصطلح شامل للعديد من نماذج الانحدار. الانحدار هو أيضا اسم من حالة العلاقات.
2. صفقات ANCOVA مع كل المتغيرات المستمرة والفئوية في حين صفقات الانحدار فقط مع المتغيرات المستمرة.
3. ANCOVA والانحدار حصة نموذج معين واحد، ونموذج الانحدار الخطي.
ويمكن أن يتم 4. كلا ANCOVA والانحدار باستخدام البرمجيات المتخصصة لإجراء العمليات الحسابية الفعلية.